תנאים לשימוש בהפצה בינומית

התכונות הבסיסיות שעלינו להיות הן בסך הכל n נערכים ניסויים עצמאיים ואנחנו רוצים לברר את ההסתברות r הצלחות, כאשר לכל הצלחה יש הסתברות ע של התרחשות. יש כמה דברים שנאמרו ומשתמעים בתיאור קצר זה. ההגדרה מסתכמת בארבעת התנאים הללו:

על התהליך הנחקר להיות מספר מוגדר בבירור של ניסויים שאינם משתנים. איננו יכולים לשנות את המספר הזה באמצע הניתוח שלנו. כל ניסוי חייב להתבצע באותה צורה כמו כל האחרים, אם כי התוצאות עשויות להשתנות. מספר הניסויים מסומן על ידי n בנוסחה.

דוגמה לביצוע ניסויים קבועים לתהליך הייתה כרוכה בחקר התוצאות של גלגול למות עשר פעמים. כאן כל גליל למות הוא משפט. המספר הכולל של הפעמים שכל ניסוי נערך מוגדר כבר מההתחלה.

כל אחד מהניסויים צריך להיות עצמאי. לכל משפט אמור להיות שום השפעה על אף אחד מהאחרים. הדוגמאות הקלאסיות לגלגול שני קוביות או הדפסת מספר מטבעות מדגימים אירועים עצמאיים. מכיוון שהאירועים אינם תלויים אנו יכולים להשתמש ב- כלל הכפל להכפיל את ההסתברויות יחד.

בפועל, במיוחד בשל כמה טכניקות דגימה, יכולים להיות זמנים בהם הניסויים אינם תלויים מבחינה טכנית. א התפלגות הבינומית לעיתים ניתן להשתמש במצבים אלה כל עוד האוכלוסייה גדולה יחסית למדגם.

instagram viewer

כל אחד מהניסויים מקובץ לשתי סיווגים: הצלחות וכישלונות. למרות שאנחנו בדרך כלל חושבים על הצלחה כדבר חיובי, אנחנו לא צריכים לקרוא יותר מדי למונח זה. אנו מצביעים על כך שהמשפט הוא הצלחה בכך שהוא תואם את מה שקבענו לכנות הצלחה.

כמקרה קיצוני כדי להמחיש זאת, נניח שאנחנו בודקים את שיעור הכישלון של נורות. אם אנו רוצים לדעת כמה בקבוצה לא תעבוד, נוכל להגדיר את ההצלחה שהניסיון שלנו יהיה כשיש לנו נורה שלא מצליחה לעבוד. כישלון המשפט הוא כאשר הנורה עובדת. זה אולי נשמע מעט לאחור, אך יתכנו כמה סיבות טובות להגדרת ההצלחות והכישלונות של המשפט שלנו כפי שעשינו. למטרות סימון יתכן ועדיף להדגיש כי קיימת סבירות נמוכה לכך שהנורה לא תעבוד ולא הסתברות גבוהה לכך שהנורה תעבוד.

ההסתברות לניסויים מוצלחים חייבת להישאר זהה לאורך כל התהליך בו אנו לומדים. הדגמת מטבעות היא דוגמא אחת לכך. לא משנה כמה מטבעות מושלכים, ההסתברות להחליף ראש היא 1/2 בכל פעם.

זה מקום אחר בו התיאוריה והפרקטיקה מעט שונים זה מזה. דגימה ללא החלפה יכול לגרום להסתברות מכל ניסוי להשתנות מעט זה מזה. נניח שיש 20 ביגל מתוך 1000 כלבים. ההסתברות לבחור ביגל באופן אקראי היא 20/1000 = 0.020. עכשיו בחר שוב מבין הכלבים שנותרו. ישנם 19 ביגלים מתוך 999 כלבים. ההסתברות לבחור ביגל אחר היא 19/999 = 0.019. ה ערך 0.2 הוא אומדן מתאים לשני הניסויים הללו. כל עוד האוכלוסייה גדולה מספיק, הערכה מסוג זה אינה מהווה בעיה בשימוש בהתפלגות הבינומית.