סטטיסטיקת נוזלים היא תחום הפיזיקה הכרוך בחקר נוזלים במנוחה. מכיוון שנוזלים אלה אינם בתנועה, פירוש הדבר שהם השיגו מצב שיווי משקל יציב, כך שסטטי הנוזלים הם בעיקר על הבנת תנאי שיווי המשקל הנוזלים האלה. כאשר מתמקדים בנוזלים לא דחוסים (כמו נוזלים) לעומת נוזלים דחוסים (כמו רוב גזים), מכונה לפעמים הידרוסטטיקה.
נוזל במנוחה אינו עובר שום לחץ מוחלט, ורק חווה את ההשפעה של הכוח הנורמלי של הנוזל שמסביב (וקירות, אם במיכל), שהוא לחץ. (עוד על כך בהמשך.) אומרים כי צורה זו של מצב שיווי משקל של נוזל היא א מצב הידרוסטטי.
נוזלים שאינם במצב הידרוסטטי או במנוחה, ולכן נמצאים בתנועה כלשהי, נופלים תחת התחום האחר של מכניקת נוזלים, דינמיקת נוזלים.
מושגים עיקריים של סטטיסטיקת נוזלים
לחץ צר לעומת לחץ נורמלי
שקול פרוסת חתך נוזלית. אומרים שהוא חווה סטרס מוחלט אם הוא חווה מתח שהוא מישוריים, או מתח שמצביע לכיוון בתוך המטוס. לחץ כה מוחלט, בנוזל, יגרום לתנועה בתוך הנוזל. לעומת זאת, לחץ רגיל הוא דחיפה לאזור חתך זה. אם האזור נמצא כנגד קיר, כמו צדו של כוס, אז אזור חתך הרוחב של הנוזל יפעיל כוח כנגד הקיר (בניצב לחתך החוצה - לכן,
לא מתכנן אותו). הנוזל מפעיל כוח כנגד הקיר והקיר מפעיל כוח לאחור, כך שיש כוח נטו ולכן אין שינוי בתנועה.הרעיון של כוח נורמלי עשוי להיות מוכר כבר מתחילת לימודי הפיזיקה, מכיוון שהוא מופיע רבות בעבודה וניתוח תרשימי גוף חופשי. כשמשהו יושב על האדמה הוא דוחף כלפי מטה לכיוון האדמה בכוח השווה למשקלו. הקרקע, בתורו, מפעילה כוח רגיל בחזרה לתחתית העצם. הוא חווה את הכוח הנורמלי, אך הכוח הנורמלי לא מביא לתנועה כלשהי.
כוח מוחלט יהיה אם מישהו ינוע על העצם מהצד, מה שיגרום לחפץ לנוע כל כך הרבה זמן שהוא יוכל להתגבר על התנגדות החיכוך. עם זאת, תעתוע כוח בתוך נוזל לא יהיה נתון לחיכוך, מכיוון שאין חיכוך בין מולקולות של נוזל. זה חלק ממה שהופך אותו לנוזל ולא לשני מוצקים.
אבל, אתה אומר, האם זה לא אומר שהחלקה הוחלפת חזרה לשאר הנוזל? והאם זה לא אומר שזה זז?
זו נקודה מצוינת. רסיס הנוזל החוצה חתכים זה נדחף חזרה לשאר הנוזל, אך כאשר הוא עושה זאת שאר הנוזל דוחף לאחור. אם הנוזל אינו דחוס, הדחיפה הזו לא תעביר שום מקום לשום מקום. הנוזל הולך לדחוף לאחור והכל יישאר בשקט. (אם ניתן לדחיסה, ישנם שיקולים אחרים, אך בואו נהיה פשוט לעת עתה.)
לחץ
כל חלקי הנוזל הזעירים האלה הדוחפים זה לזה, ונגד דפנות המכולה, מייצגים פיסות כוח זעירות, וכל הכוח הזה מביא לתכונה פיזית חשובה נוספת של הנוזל: לחץ.
במקום שטחי חתך יש לקחת בחשבון את הנוזל המחולק לקוביות זעירות. כל צד של הקוביה נדחף על ידי הנוזל שמסביב (או משטח המכולה, אם לאורך הקצה) וכל אלה הם מתח רגיל כנגד אותם צדדים. הנוזל הבלתי דחוס בתוך הקוביה הזעירה לא יכול לדחוס (זה המשמעות של "לא דחוס", אחרי הכל), ולכן אין שינוי בלחץ בתוך הקוביות הזעירות האלה. הכוח הלוחץ על אחת הקוביות הזעירות הללו יהיה כוחות נורמליים שמבטלים במדויק את הכוחות משטחי הקוביה הסמוכים.
ביטול כוחות זה לכיוונים שונים הוא אחד התגליות העיקריות ביחס ללחץ ההידרוסטטי, המכונה חוק פסקל לאחר הפיזיקאי והמתמטיקאי הצרפתי המבריק. בלייז פסקל (1623-1662). המשמעות היא שהלחץ בכל נקודה זהה בכל הכיוונים האופקיים, ולכן שינוי הלחץ בין שתי נקודות יהיה פרופורציונלי להבדל הגובה.
צפיפות
מושג מפתח נוסף להבנת הסטטיסטיקות הנוזליות הוא צפיפות של הנוזל. זה מתווה את משוואת החוק של פסקל, ולכל נוזל (כמו גם מוצקים וגזים) יש צפיפות שניתן לקבוע באופן ניסיוני. להלן קומץ צפיפות נפוצה.
צפיפות היא המסה לנפח יחידה. עכשיו חשוב על נוזלים שונים, כולם מתפצלים לקוביות הזעירות שהזכרתי קודם. אם כל קוביה זעירה זהה בגודל, אז הבדלים בצפיפות פירושם שלקוביות זעירות עם צפיפות שונות תהיה כמות שונה של מסה בהן. קוביה זעירה בצפיפות גבוהה יותר תכלול בה יותר "דברים" מאשר קוביה זעירה בצפיפות נמוכה יותר. הקוביה בצפיפות גבוהה יותר תהיה כבדה יותר מהקוביה הזעירה בצפיפות נמוכה יותר ולכן תשקע בהשוואה לקוביה הזעירה בצפיפות נמוכה יותר.
כך שאם אתה מערבב שני נוזלים (או אפילו שאינם נוזלים) יחד, החלקים הצפופים יותר ישקעו כי החלקים הפחות צפופים יעלו. זה ניכר גם בעקרון של ציפה, שמסביר כיצד עקירה של נוזל מביאה לכוח כלפי מעלה, אם אתה זוכר את שלך ארכימדס. אם תשימו לב לערבוב של שני נוזלים בזמן שזה קורה, למשל כשאתם מערבבים שמן ומים, תהיה תנועה רבה של נוזלים, וזה היה מכוסה על ידי דינמיקת נוזלים.
אבל ברגע שהנוזל יגיע לשיווי משקל, יהיו לך נוזלים בצפיפות שונה שהתיישבו לשכבות, כאשר הנוזל בצפיפות הגבוהה ביותר מהווה את השכבה התחתונה, עד שתגיע לנמוך ביותר צפיפות נוזל בשכבה העליונה. דוגמה לכך מוצגת בגרפיקה בדף זה, שם נוזלים מסוגים שונים הבדילו את עצמם לשכבות מרובדות על סמך צפיפותן היחסית.